

Alpha Magnetic Spectrometer (AMS) - 02 Critical Design Review Structural Testing & Cyromagnet System Testing Flow

Phil Mott May 13-16, 2003

Non-Linear Cryomagnet Support Straps Verification Testing

- Cryomagnet Support System Static Testing (England & US)
 - All strap components will have multiple tests to failure (completed)
 - All strap components will have multiple fatigue tests (completed)
 - 2 complete strap assemblies tested for fatigue & failure
 - Static test to 1.0 x limit load to characterize the strap (completed)
 - Fatigue tested includes transportation, launch, on-orbit, landing (completed)
 - Another static test to 1.0 x limit load to compare to pre-fatigue static test (completed)
 - Straps will then be dynamically tested (see dynamic test section) (completed)
 - Following all previous testing, straps will be static tested to failure
 - Warm test at JSC STL J13
 - Cold test at CTG in England
 - Each STA & Flight strap will be tested to 1.2 x limit load

- Flight Cryomagnet Static Testing (England)
 - The Flight Cryomagnet will be tested to 1.1 x limit load due to magnetic forces
 - Each coil is tested to at least full current.
 - Strain gages are attached to 1 dipole coil and 1 racetrack coil for FEM correlation.

- Component Level Static Tests
 - –Strap Static Test (JSC STL J13)
 - Test to 1.2 * Maximum Flight Load & check for yielding
 - Repeat Test to Failure

- Component Level Static Tests (cont.)
 - VC Joint Stiffness Static Test (JSC STL J13)
 - With and without liquid shim in joint clearance holes
 - Test each configuration to failure
 - Measure stiffness of each bolted joint for FEM correlation

Support Ring Simulator Plate

Conical Flange Simulator Plate

Anti-Rotation Load Cells

Load Cell / Actuator

- Component Level Static Tests (cont.)
 - O-Ring Test Fixture Static Test (JSC STL J13)
 - Positive Pressure (0.8 atm gauge)
 - Help correlate FEM

- Component Level Static Tests (cont.)
 - Interface Plate Static Test (JSC STL J13)
 - Lower USS-02 Joint to VC Interface Plate (low margin and analysis uncertainty)
 - Flight Interface Plate with Lower Joint Simulator
 - Test to 1.1 x limit and check for yielding
 - Repeat test to failure
 - Lower Joint Static Test (JSC STL J13)
 - Lower USS-02 Joint (low margin)
 - Flight Lower Joint
 - Test to 1.1 x limit and check for yielding
 - Repeat test to failure

Lower Joint Static Test

- PAS Static Test (LM3 Completed February 2003)
 - –ISS Configuration
 - -Static tested to 1.5 x limit load to ensure that it will meet the required stiffness and deflection requirements

Static Verification Testing

- Full Assembly Static Test (JSC STL J13)
 - Orbiter Configuration simulated with modified test stands from AMS-01 on STS-91
 - -Test to 1.1 x limit load
 - Will include enough instrumentation to correlate FEM to 1.4 x
 limit load

Static Verification Testing

- Acoustic Tests
 - Cryomagnet System (ESTEC The Netherlands)
 - Cryomagnet Structural Test Article (STA) [STA VC, STA SFHe Tank,
 Cold Mass Replica] will be tested to flight acoustic levels to determine if there is any o-ring seal leakage
 - Test must be performed with cryosystem at room temperature and vacuum in order to measure leaks in the o-ring seals
 - Strap preload increased to simulate thermal load of Cold Mass Replica

- Dynamic Tests
 - -Cryomagnet Support System (Straps) (LM Denver)
 - 2 complete strap assemblies were dynamically tested to determine dynamic and damping characteristics
 - Included enough instrumentation to dynamically correlate FEM of 1 DOF model

- Dynamic Tests (cont.)
 - –Cryomagnet System Sine Sweep Tests (INFN)
 - Cryomagnet STA (STA VC, STA SFHe Tank, Cold Mass Replica)
 will be tested in a sine sweep test in order to excite the non-linear
 support straps to load levels so that the strap reaches and
 extends into the stiffness region associated with the launch strap
 engagement
 - Input environment will be developed using non-linear DCLA results. The Cryomagnet system response will be analytically determined and reproduced during testing.
 - Test will be performed with the system at cryogenic temperatures
 - Will include enough instrumentation to dynamically correlate FEM (Discussed during the Dynamics Presentation)

STA Cryosystem in the Vacuum Case Test Fixture (VCTF)

phil.mott@Imco.com / trent.martin@Imco.com

- Modal Tests
 - -Full Assembly Modal Test (JSC STL J13)
 - Orbiter Configuration simulated with modified test stands from AMS-01 on STS-91
 - Test will be performed with the system at cryogenic temperatures
 - Will include enough instrumentation to dynamically correlate FEM

- O-Ring Test Fixture (JSC STL Tests On-Going)
 - Sub-scale vacuum vessel will be used to show that the leak rate through the o-ring seals is at an acceptable level
 - Used to develop vacuum leak check procedures for the STA & Flight Vacuum Case
 - First vacuum pull was instrumented to aid in FEM correlation

- -Vacuum Case
 - Both the Flight & STA VC will undergo proof pressure testing to 1.0 x MDP (0.8 atm gauge). The STA will be proof tested twice. (This is an emergency case only because the system is designed for normal use as a vacuum vessel and not as a pressure vessel.)
 - Both the Flight & STA VC will undergo vacuum leak checks at various stages during the static and dynamic testing.

Vacuum leak checks at various stages of assembly and at final

assembly.

- -Cryomagnet Pressure Systems
 - SFHe Tank Proof Pressure Tests to 1.1 x MDP
 - Plumbing Systems Proof Pressure Tests to at least 1.5 x MDP
 - Warm He Tank Proof Pressure Test to at least 1.5 x MDP
 - He Leak Tests Throughout assembly and final assembly
 - Small Scale Dewar Vent Tests (Successfully Completed)
 - Safety Panel agrees that testing proved no Shuttle overboard vent will be required (See minutes "ams2tim011703")

- -TRD & TCS Pressure Systems
 - TRD Xe Tank
 - Proof Pressure Test to 1.5 x MDP
 - Random Vibration to 8.9 Grms Exceeds AMS-02 requirements
 - Same as tank used in Plasma Contactor Unit (PCU) built by Arde
 - TRD CO₂ Tank
 - Proof Pressure Test to 1.5 x MDP
 - Random Vibration to 8.9 Grms (axial) & 4.5 Grms (lateral) Exceeds
 AMS-02 requirements
 - Also built by Arde
 - TCS CO₂ Tank
 - Proof Pressure Test to 1.5 x MDP
 - Plumbing Systems
 - Proof Pressure Tests to at least 1.5 x MDP
 - Warm Helium Tank to Operate Cryosystem Warm Valves
 - Proof Pressure Test to at least 1.5 x MDP

Cyromagnet System Testing Flow

JSC / U.S.

- Proof Pressure Test
- Vacuum Leak Check
- Perform Small Scale O-ring Leak Testing
- Perform Small Scale pressure testing
- Weld tests

ETH, SCL, HBE

- Proof Pressure Test
- He Leak Check

CMR w/ STA SFHe Tank

Cryomagnet STA

SCL, England

- Initial Assembly & Welding
- Proof Pressure Test
- Vacuum Leak Check

England/JSC/LM Denver

- Perform Strap Static/Dynamic/ Thermal/Fatigue Testing

INFN, Italy

- Sine Sweep Test
- Vacuum Leak Checks during testing
- **Begin Long Duration** Vacuum Leak Tests

England

- Small Dewar **Vent Tests**

Cryomagnet

ESTEC, Netherlands

Phil Mott / Trent Martin

JSC

 Continue long duration endurance and leak checks

Cryomagnet STA

JSC / U.S.

- Proof Pressure Test
- Vacuum Leak Check

Flight VC

ETH / SCL / HBE

- He Tank Proof Pressure Test
- He Tank He Leak Check

Magnet

LOCKHEED MARTII

AMS Collaboration

- -Experiment Components
- -Sub-component Testing

Integrate Payload in Switzerland

SCL, England

- Flight VC & Magnet
- Proof Pressure Test
- Vacuum Leak Check
- Magnetic Load Static Testing
- Quench Testing

